Math342: *Abstract Algebra I* 2010-2011 Lecture 5: *Cyclic Groups*

<u>Review</u>

•we are mainly concerned with finite groups, that is, groups with a finite number of elements.

•The order of a group, **/***G*/, is the number of elements in the group. The order of a group may be finite or infinite.

•The order of an element, |a|, is the smallest positive integer n such that $a^n = e$.

•The order of an element may likewise be finite or infinite.

•Note: if |a|=2 then $a=a^{-1}$. If |a|=1 then a=e.

A subgroup H of a group G is a subset of G together with the group operation, such that H is also a group.

That is, **H** is closed under the operation, and includes inverses and identity.

Note: **H** must use the same group operation as **G**.

One step subgroup test

Suppose G is a group and H is a non-empty subset of G.
If, whenever a and b are in H, a*b⁻¹ is also in H,
then H is a subgroup of G.

Or, in additive notation: If, whenever *a* and *b* are in **H**, *a* - *b* is also in **H**, then **H** is a subgroup of **G**. To apply this test:
Note that H is a non-empty subset of G.
Show that for any two elements
a and b in H, a*b⁻¹ is also in H.
Conclude that H is a subgroup of G.

Exercise: Show that the even integers are a subgroup of the Integers.

Two step subgroup test

Let **G** be a group and **H** a nonempty subset of **G**. If *a*∗*b* is in **H** whenever *a* and *b* are in **H**, and *a*⁻¹ is in **H** whenever *a* is in **H**, then **H** is a subgroup of **G**.

To apply this test:

- •Note that **H** is nonempty .
- •Show that **H** is closed with respect to the group operation.

•Show that **H** is closed with respect to inverses.

•Conclude that **H** is a subgroup of **G**.

Example: Let G be an Abelian group and $H = \{x \in G : x^3 = e\}$. Show that H is a subgroup of G.

We note that e is in H, since $e^3 = e$. So H is not empty. Let a, b be in H, then $a^3 = e$ and $b^3 = e$. Now (ab)³ = $b^3 a^3 = a^3 b^3 = e$, therefore ab is in H. Since $a^3 = e$, $(a^{-1})^3 = (a^{-1})^3 e = (a^{-1})^3 a^3 = (a^{-1} a)^3 = e$.

Finite subgroup test

Let **H** be a nonempty finite subset of **G**. If **H** is *closed* under the group operation, then **H** is a subgroup of **G**.

<u>To Use the Finite Subgroup</u> <u>Test:</u>

If we know that **H** is finite and non-empty, all we need to do is show that **H** is closed under the group operation. Then we may conclude that **H** is a subgroup of **G**.

Examples of Subgroups

- Let **G** be a group, and *a* an element of **G**.
- Let $\langle a \rangle = \{a^n, where n \text{ is an integer}\}$, that is, all powers of a
- Or, in additive notation
- let <a>={na, where n is an integer}, that is, all
 multiples of a
- Then $\langle a \rangle$ is a subgroup of **G**.

For, in multiplicative notation, $a^0 = 1$ is the identity; while 0a=0 is the identity in additive notation. Thus $\langle a \rangle$ includes the identity. Also note that the integers less than 0 are included here, so $\langle a \rangle$ includes all inverses.

For example:

- In R*, <2>, the powers of 2, form a subgroup of R*.
- In **Z**, <2>, the even numbers, form a subgroup.
- In Z₈, the integers mod 8,
 <2>={2,4,6,0} is a subgroup of Z₈.

Cyclic Groups

A group G is cyclic if there is an element a in G such that $G = \{a^n \mid n \in Z\}$. a is called a generator of G and we write $G = \langle a \rangle$.

Note That:

- In a group G, for $x \in G$, we define the powers x^n of x for $n \in Z$ as
- $x^0 = e$, where e is the identity of G.
- xⁿ = x.x.x...x n >0
- $x^{-n} = (x^{-1})^n = (x^{-1}) \cdot (x^{-1}) \cdot (x^{-1}) \cdots \cdot (x^{-1})$ n > 0

Theorem 4.1

Let G be a group, and let a belong to G. If a has infinite order, then aⁱ = a^j if and only if i = j.
If a has finite order, say n, then

 $\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\}$ and $a^i = a^j$ if and only if n divides i-j.

For any group element *a*,
$$|a| = |\langle a \rangle|$$

Let G be a group and let a be an element of order n in G. If $a^k = e$, then n divides k.

Note That

1. Multiplication in $\langle a \rangle$ works the same as addition in Z_n whenever |a| = n, no matter what group G is or how the element a is chosen.

If (i+j)mod n = k, then $a^i a^j = a^k$

2. If *a* has infinite order, then multiplication in *<a>* works the same as addition in *Z*.

 $a^i a^j = a^{i+j}$

(A simple method of computing |a^k| knowing only |a|) Theorem 4.2

Let a be an element of order *n* in a group and let *k* be a positive integer. Then $\langle a^k \rangle = \langle a^{gcd(n, k)} \rangle$ and $|a^k| = n/gcd(n, k)$.

<u>Corollaries</u>

- 1. In a finite cyclic group, the order of an element divides the order of the group.
- 4. An integer k in Z_n is a generator of Z_n iff gcd(n, k) = 1

How many subgroups a finite cyclic group has and how to find them?

Fundamental theorem of cyclic groups

Theorem 4.3

Every subgroup of a cyclic group is cyclic. Moreover, if |a| = n, then the order of any subgroup of $\langle a \rangle$ is a divisor of n and for each positive divisor k of n, the group $\langle a \rangle$ has exactly one subgroup of order k, $\langle a^{n/k} \rangle$.

For each positive divisor k of n, the set <n/k> is the unique subgroup of Z_n of order k; moreover, these are the only subgroups of Z_n.

We can count the number of elements of each order in a finite cyclic group.

The Euler phi function:

Define φ(1) = 1, and for any integer n>1,
define φ(n) to be the number of positive
integers less than n and relatively prime to n.

For example, in the group U(n) what is $\varphi(n)$?

- It is impractical to determined the number of positive integers less than *n* and relatively prime to *n* by examining them one by one.
- However, the following properties of the φ function simplify things.
- For any prime p, $\varphi(p^n) = p^n p^{n-1}$
- For a relatively prime *m* and *n*,

$$\varphi(mn) = \varphi(m) \ \varphi(n).$$

For example, $\varphi(40) = \varphi(8) \varphi(5) = 4.4 = 16$, $\varphi(75) = \varphi(5^2) \varphi(3) = (25 - 5).2 = 40$.

<u>Theorem 4.4 (number of elements of</u> <u>each order in a cyclic group)</u>

If d is a positive divisor of n, the number of elements of order d in a cyclic group of order n is φ(d).

<u>Note that</u> there is no formula for the number of elements of each order for arbitrary finite group, though we still can have the next result.

<u>Corollary (Number of elements of</u> <u>order d in a finite group)</u>

In a finite group, the number of elements of order d is divisible by $\phi(d)$.

The relationships between the various subgroups of a group can be illustrated by a subgroup lattice of the group.