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Review

•we are mainly concerned with finite groups, that is, groups 
with a finite number of elements.

•The order of a group, |G|, is the number of elements in 
the group.  The order of a group may be finite or infinite.

•The order of an element, |a|, is the smallest positive
integer n such that an = e.  

•The order of an element may likewise be finite or infinite.

•Note: if |a|=2 then a=a-1. If |a|=1 then a=e. 
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• A subgroup H of a group G is a subset of G
together with the group operation, such that
H is also a group. 

That is, H is closed under the operation, and 
includes inverses and identity. 

Note: H must use the same group operation as 
G.
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One step subgroup test

Suppose G is a group and H is a non-
empty subset of G.

If, whenever a and b are in H,
a*b-1 is also in H,
then H is a subgroup of G.

Or, in additive notation:
If, whenever a and b are in H,
a - b is also in H,
then H is a subgroup of G.

To apply this test:
Note that H is a non-empty 
subset of G.
Show that for any two 
elements 
a and b in H, a*b-1 is also in H.
Conclude that H is a 
subgroup of G.

Exercise: Show that the even integers are a subgroup of 
the Integers.
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Two step subgroup test

Let G be a group and H a 
nonempty subset of G.  If 
a*b is in H whenever a and
b are in H, and a-1 is in H
whenever a is in H, then H
is a subgroup of G.

To apply this test:

Note that H is nonempty .
Show that H is closed with respect to
the group operation.
Show that H is closed with respect to
inverses.
Conclude that H is a subgroup of G.

Example: Let G be an Abelian group and  H = { x      G : x3 = e }. Show that 
H is a subgroup of G.

We note that e is in H, since e3 = e. So H is not empty.
Let a, b be in H, then a3 = e and b3 = e. Now (ab )3  = b3 a3 = a3 b3 = e, 
therefore ab is in H.
Since a3 = e, (a-1 )3 = (a-1 )3 e = (a-1 )3 a3 = ( a-1  a )3 = e.
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Finite subgroup test

Let H be a nonempty finite subset
of G. If H is closed under the
group operation, then H is a
subgroup of G.

To Use the Finite Subgroup 
Test:

If we know that H is finite 
and non-empty, all we need 
to do is show that H is closed 
under the group operation. 
Then we may conclude that
H is a subgroup of G.
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Examples of Subgroups
Let G be a group, and a an element of G.  
Let <a> = {an , where n is an integer}, that is, all 

powers of a  
Or, in additive notation 
let <a>={na, where n is an integer}, that is, all 

multiples of a
Then <a> is a subgroup of G.

For,  in multiplicative notation, a0 = 1is the identity; 
while 0a=0 is the identity in additive notation. 

Thus <a> includes the identity.
Also note that the integers less than
0 are included here, so <a> includes all inverses.
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For example:

• In R*, <2>, the powers of 2, form a subgroup 
of R*. 

• In Z, <2>, the even numbers, form a subgroup.

• In Z8, the integers mod 8, 

<2>={2,4,6,0}  is a subgroup of Z8 .

23/12/31
Dr. Jehan A. Al-bar, Contemporary Abstract 

Algebrs by J. Gallian
8



Cyclic Groups

A group G is cyclic if there is an element 
a in G such that G = { an | n       Z} .

a is called a generator of G and we write

G = < a >.
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Note That:

In a group G, for x      G, we define the powers xn

of x for n       Z as

• x0 =  e, where e is the identity of G.

• xn = x.x.x….x          n >0

• x-n = (x-1)n =(x-1).(x-1).(x-1)……..(x-1)       n>0
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Theorem 4.1

Let G be a group, and let a belong to G. If a has 
infinite order, then ai = aj if and only if

i = j. 

If a has finite order, say n, then

<a> = {e, a, a2 ,…, an-1} and ai = aj if and only if 

n divides i-j.
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Corollary 1

For any group element a, |a| = |<a>|
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Corollary 2

Let G be a group and let a be an element of 
order n in G. If ak = e, then n divides k.
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Note That

1. Multiplication in <a> works the same as 
addition in Zn whenever |a| = n, no matter 
what group G is or how the element a is 
chosen.

If (i+j)mod n = k, then ai aj = ak
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2. If a has infinite order, then multiplication in 
<a> works the same as addition in Z.

ai aj = ai+j
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(A simple method of computing |ak| 
knowing only |a|)
Theorem 4.2

Let a be an element of order n in a group and let 
k be a positive integer. Then <ak> = <agcd(n, k)>

and |ak| = n/gcd(n, k).
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Corollaries

1. In a finite cyclic group, the order of an element 
divides the order of the group.

2. Let |a|=n. Then 

<ai> = <aj> iff gcd(n, i) = gcd(n, j),  and 

|ai| = |aj| iff gcd(n, i) = gcd(n, j).

3. <a> = <aj> iff gcd(n, j) = 1 and |a| = |<aj>| iff
gcd(n, j) = 1.

4. An integer k in Zn is a generator of Zn iff gcd(n, k) 
= 1
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How many subgroups a finite cyclic 
group has and how to find them?

Fundamental theorem of cyclic groups

Theorem 4.3

Every subgroup of a cyclic group is cyclic. 
Moreover, if |a|= n, then the order of any 
subgroup of <a> is a divisor of n and for each 
positive divisor k of n, the group <a> has 
exactly one subgroup of order k, <an/k>.
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Corollary (Subgroups of Zn)

For each positive divisor k of n, the set <n/k> is 
the unique subgroup of Zn of order k; 
moreover, these are the only subgroups of Zn .
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We can count the number of 
elements of each order in a finite 
cyclic group.
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The Euler phi function:

Define φ(1) = 1, and for any integer n>1,

define φ(n) to be the number of positive 
integers less than n and relatively prime to n.

For example, in the group U(n) what is  φ(n)?
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It is impractical to determined the number of 
positive integers less than n and relatively 
prime to n by examining them one by one.

However, the following properties of the φ
function simplify things.

• For any prime p, φ(pn)= pn – pn-1     

• For a relatively prime m and n, 

φ(mn) = φ(m)  φ(n).

For example, φ(40)= φ(8) φ(5)= 4.4=16,

φ(75) = φ(52) φ(3) = (25 - 5).2 = 40.
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Theorem 4.4 (number of elements of 
each order in a cyclic group)

If d is a positive divisor of n, the number of 
elements of order d in a cyclic group of order 
n is φ(d). 
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Note that 
there is no formula for the number 
of elements of each order for 
arbitrary finite group, though we 
still can have the next result.
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Corollary (Number of elements of 
order d in a finite group)

In a finite group, the number of elements of 
order d is divisible by φ(d). 
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The relationships between the various 
subgroups of a group can be illustrated by a 
subgroup lattice of the group.
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